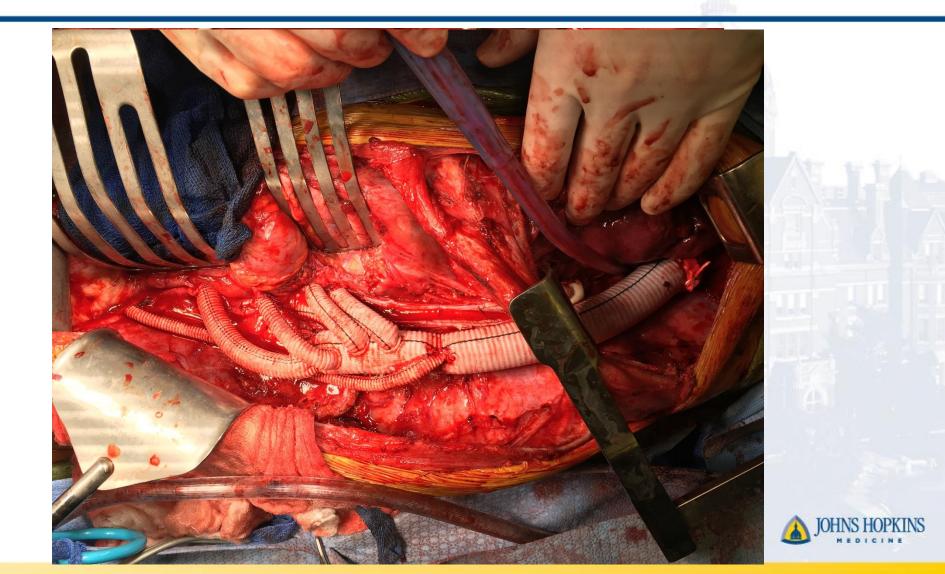
Connective Tissue Disorders for the Vascular Surgeon: Lessons Learned at Hopkins

James H. Black, III, MD, FACS The David Goldfarb, MD, Research Professor of Surgery

Chief, Division of Vascular Surgery and Endovascular Therapy The Johns Hopkins Hospital, Baltimore, Maryland

Annual Scientific Meeting Vascular Society 28 Nov 2018

Rational Empiricism of Osler



"There is no disease more conducive to clinical humility than aneurysm of the aorta."

"The tragedies of life are largely arterial."

• 12 year old Loeys-Dietz Syndrome....

Connective Tissue Disorders

 Primary target are structural proteins composed of elastin and collagen (not CVD)

20-40

10-20

20-40

<3

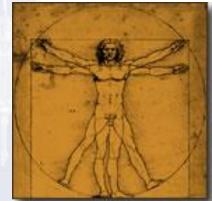
Structural Elements of Blood Vessels

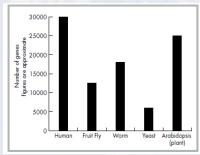
Approximate Amount (% dry wt)

- Structural Proteins
- Type I Collagen
- Type III Collagen
- Elastin, fibrillin
- Type IV Collagen, Laminin <5
- Type V and VI Collagen <2
- Proteoglycans (>30 types)

- Function Fibrillar net Thin fibrils Elasticity Basilar Unclear Resilience
- COL3 is very important in vasculogenesis.

What Are Connective Tissue Disorders?


- 1. Studied natural history
- 2. Defined basis for genetic inheritance
- 3. Understood pathophysiologic mechanism to guide treatment


"Heritable Disorders of Connective Tissue" Victor McCusick, MD, 1952 Marfan Syndrome Vascular Ehlers Danlos Syndrome Loeys-Dietz Syndrome

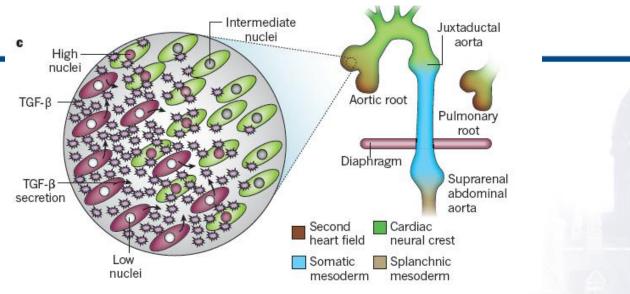
A Brief History of Progress...

- Technological advances set the stage for rapid sequencing technology.
- Human Genome Project:
 - Started 1990
 - The DNA sequence of human
 - chromosome 22
 - Full sequence of C22, December 1999.
 - 33,000,000 bp, approximate 550 genes.
 - Completed April, 2003.
 - 30,000 total genes.
 - Only 380 have been linked to disease.

Genetics Influences on Aneurysms

Gene (protein)

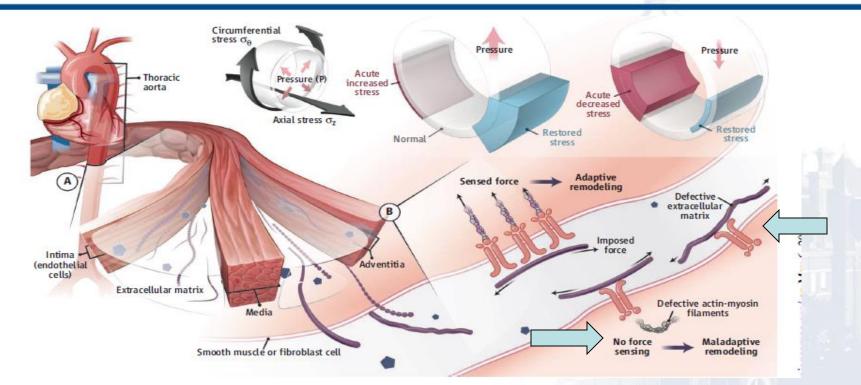
Gene (protein)	iene (protein) Human aneurysmal syndrome				
Extracellular matrix protein					
FBN1 (flbrillin-1)	MFS; highly penetrant ascending aortic aneurysm				
EFEMP2 (fibulin-4)	Cutis laxa with aneurysm; ascending aortic aneurysm and tortuosity				
ELN (elastin)	Cutis laxa with aneurysm; low penetrance ascending aortic aneurysm and dissection				
COL1A1 (collagen o- 1(l))	Osteogenesis imperfecta; extremely rare aortic aneurysm; EDS, type 7A; dissection of medium-sized arteries				
COL1A2 (collagen 0-2(l))	Osteogenesis imperfecta; extremely rare aortic aneurysm; EDS, cardiac valvular dystrophy type 7B; borderline aortic root enlargement with aortic regurgitation				
COL3A1 (collagen o- 1(iii))	EDS, type 4; frequent arterial dissection with infrequent aneurysm				
COL4A1 (collagen o- 1(IV))	Hereditary angiopathy, nephropathy, aneurysms and muscle cramps; infrequent aneurysms				
COL4A5 (collagen o-5(IV))	X-linked Alport syndrome; ascending aortic and abdominal aneurysms and dissections				
LOX (lysyl oxidase)	No human phenoty pe described				
PLODI (lysyl hydroxylase 1)	EDS, type 6; rare aneurysm				
PLOD3 (lysyl hydroxlase 3)	Bone fragility with contractures, arterial rupture and deafness; frequent medium-sized arterial aneurysms				
Transmembrane protein					
TGFBR1 (TGF-β receptor type 1)	LDS; highly penetrant root and diffuse large and medium arterial aneurysms				
TGF8R2 (TGF-β receptor type 2)	LDS; highly penetrant root and diffuse large and medium arterial aneurysms; familiai thoracic aortic aneurysms and dissections; highly penetrant root and medium arterial aneurysms				
<i>E</i> NG (endoglin)	Hereditary haemorrhagic telanglectasia; incompletely penetrant aortic and medium-sized arterial aneurysms				
ACVRL1 (activin receptor-like kinase I)	Hereditary haemorrhagic telanglectasia; incompletely penetrant aortic and medium-sized arterial aneurysms				
SLC2410 (glucose transporter type 10)	Arterial tortuosity syndrome; diffuse arterial tortuosity, stenoses, aneurysms				
NOTCH1 (NOTCH1)	Bicuspid valve with ascending aortic aneurysm				
JAG1 (JAGGED1)	Alagilie syndrome; intracranial aneurysms, coarctation of the aorta, aortic aneurysm				
GJA1 (connexin-43)	Hypoplastic left heart syndrome (HLHS)				


• /				
Transmembrane protein cont.				
PKD1 (polycystin-1)	Polycystic kidney disease with intracranial aneury sms			
PKD2 (polycystin-2)	Polycystic kidney disease with intracranial aneurysms			
Cytopiasmic protein				
SMAD3 (SMAD family member 3)	LDS; aortic aneurysm with osteoarthritis			
ACTA2 (o-smooth muscle actin)	Familial aortic aneurysm with livedo reticularis and iris flocculi			
MYH11 (smooth muscle myosin)	Familial aortic aneurysm with patent ductus arteriosus			
FLNA (filamin-A)	Periventricular nodular heterotopia with EDS features; ascending aortic aneurysm and valvular dystrophy			
NF1 (neurofibromin-1)	Neurofibromatosis; med lum-sized arterial aneurysm and stenosis			
PTPN11 (protein-ty rosine phosphatase 2C)	Noonan and LEOPARD syndromes; coronary artery aneurysms and rare ascending aortic aneurysm			
NPHP3 (nephrocystin-3)	Nephronophthisis			
NOS3 (nitric oxide synthase 3)	Refractory hypertension			
TSC2 (tuberin)	Tuberous scierosis; diffuse thoracoabdominal aneury sms			
GAA (lysosomal α-glucosidase)	Acid maitase deficiency, adult onset; intracranial aneurysms			
S100A12 (S100A12)	No human phenotype; increased \$100A12 protein expression in human MYH11-mutation aneurysmal tissues			
Nuclear protein				
MED12 (mediator complex subunit 12)	Lujan–Fryns syndrome; extremely rare aneurysm			
KLF15 (Krüppe⊢like factor 15)	No human phenotype; Krüppel-like factor 15 downregulated in human abdominal aortic aneurysm			
KLF2 (KrüppeHike factor 2)	No human phenotype			
Chromosomal anoma	ily			
45, X	Turner syndrome; bicuspid aortic valve, coarctation of			

Human aneurysmal syndrome

45, X	Turner syndrome; bicuspid aortic valve, coarctation of
	the aorta, ascending aneurysm

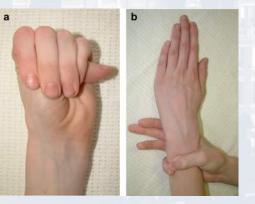
Doyle, FEBS letters, 2012 Doyle, FEBS letters, 2012


Cell Biology of the Aorta in utero

- Vasculogenesis vs Elastogenesis.
- Different lineages have different biologies.
- Very likely to respond differently to physical and environmental stressors.
- Obligate failures of CTD?

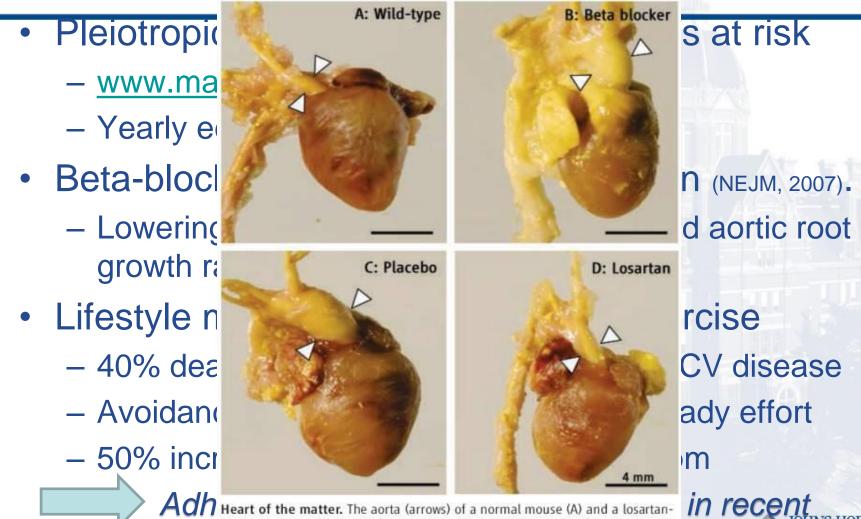
Reconciling Dissection and Aneurysm Pathophysiology....

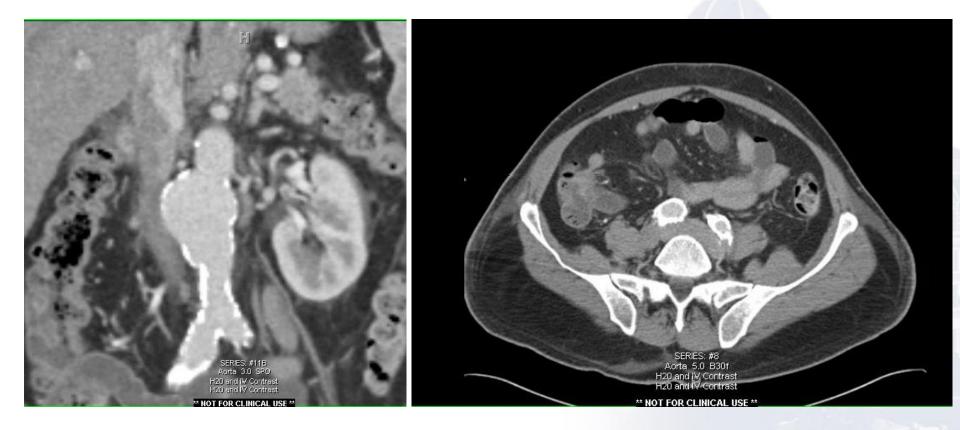

Aortic biology is a now realized as marriage of matrix homeostasis and structural stressors. Lindsey, Dietz, Nature 2013 Humphrey, Science, 2015


Diagnosis of MFS

• Revised in 2012

- More emphasis on cardinal features of root aneurysm and lens dislocation
- FBN1 testing weighted with a score of other systemic findings
- Differential diagnosis is MASS, LDS, CCA
- ß-blocker ± ARB (Lacro, NEJM)

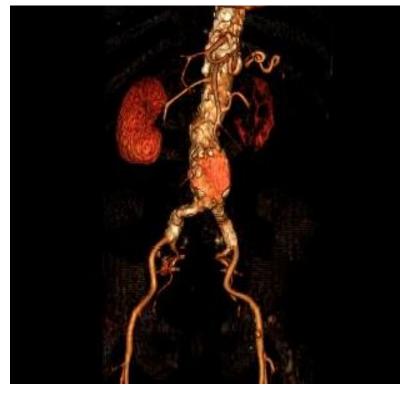



Surveillance and Management

litigation internation in

'late

The Modern Problem: Aging of the Aorta in MFS



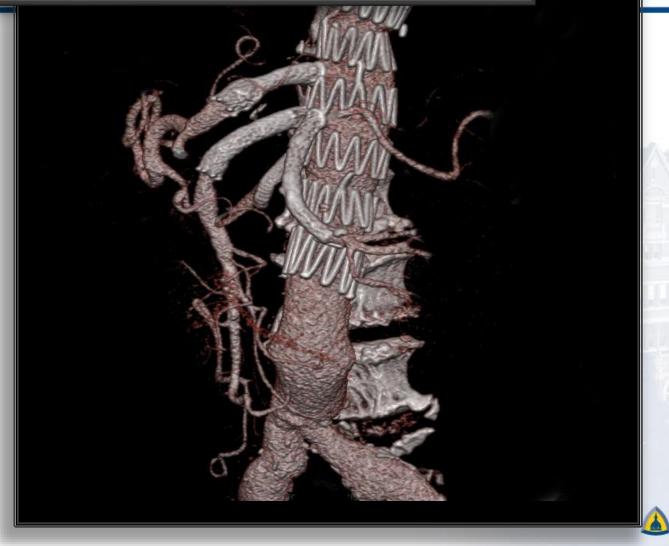

• 60 yo MFS, 17 yrs post CVG, nonsmoker

Aging of the Aorta in MFS

• 52 yo MFS, 15 yrs post CVG, 5yrs post TAAA, nonsmoker



How should we handle these aging CTD patients?



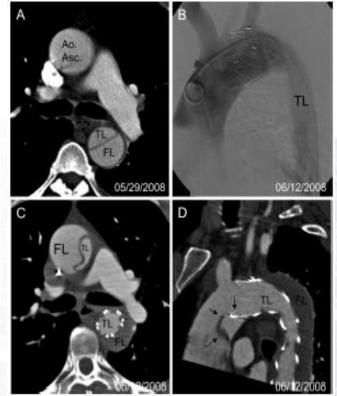
Pre-Procedure

Follow-up 3D CTA: No Endoleak Seen up to 48 mos

Type B dissection in MFS

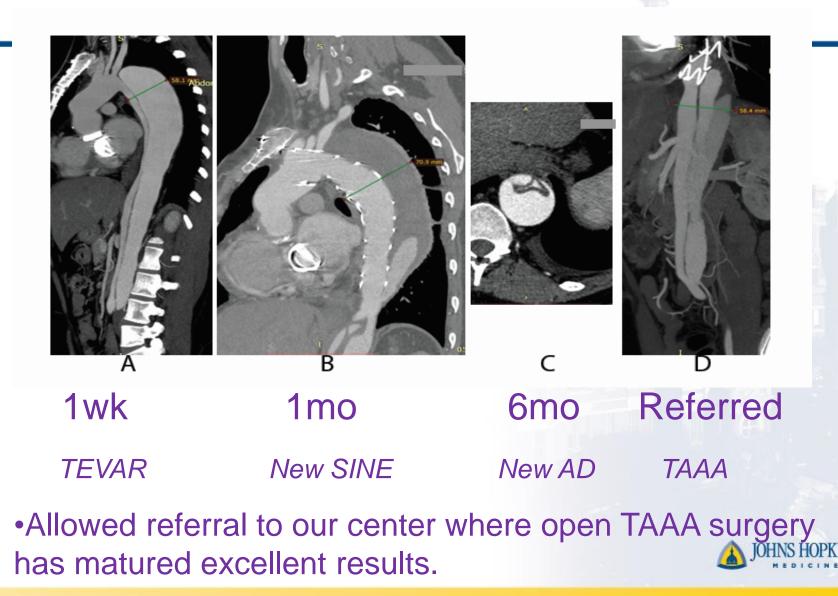

- Biologic basis for Type B dissection has been postulated.(Development, 2000)
 -VSMCs from cardiac neural crest
- Time onset for Type B dissection after root aneurysm surgery is 14 yrs.
- DTA intervention after Type A dissection is 2.5 yrs.
- 50% pts will require DTA surgery over a mean of 26yrs.(JTCVS, 2009)

Concerns about TEVAR in MFS

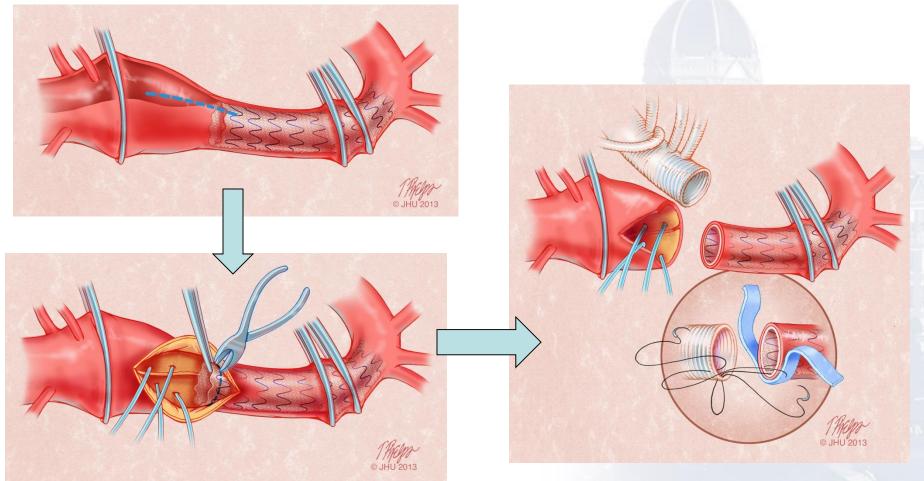

- 1. CTD exclusion of all devices to date
 - Device radial force.
 - Tendency of devices to straighten.
 - Bare metal stents?
- 2. Fragility of the aortic wall
 - Stent graft induced trauma.
 - Retrograde dissection.
 - Failure to control aorta remote to stent.

Retrograde Dissections in MFS

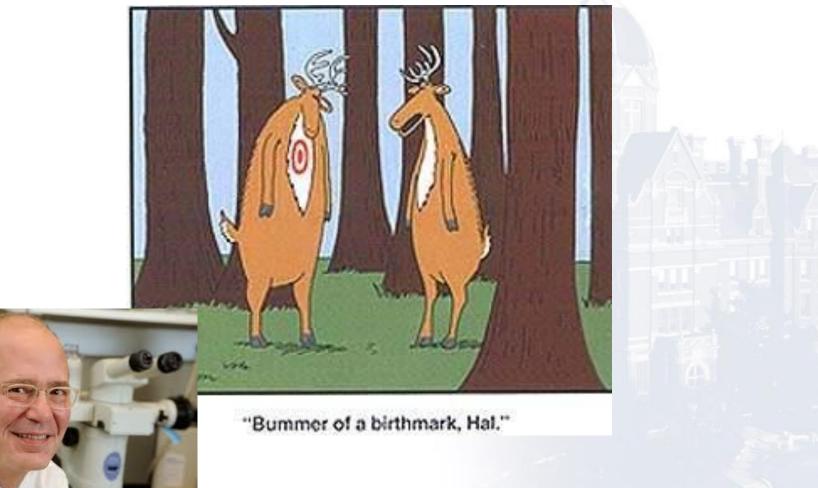
- The arch and ascending are at risk for rAAD. (Dong, Circulation, 2009)
 - Distal ascending and proximal arch are usually guidewire related.
 - Whole arch dissection is usually stent-graft induced (80%+).
- MFS pts accounted for 12% of rAAD cases, but were only 1% of series.
- "Retrograde aortic dissection was the most common complication for MFS."



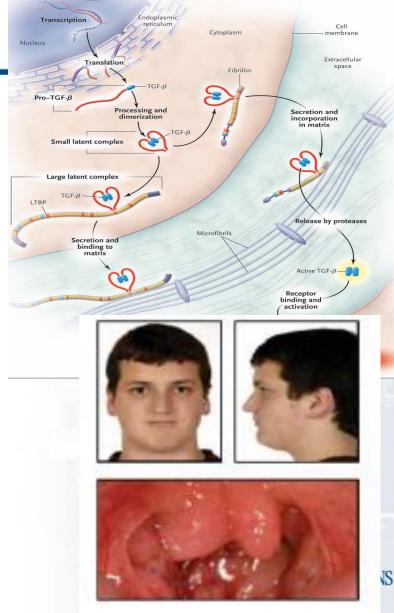
Where does TEVAR leave open TAAA Surgery in Marfan Syndrome?


- •Evidence suggests TEVAR may be safe in short term, but device issues are central in local aortic complications, especially in acute Type B.
- •There is potential benefit of TEVAR to stabilize acute DTA emergencies:
 - "Bridge" to definitive therapy in rupture
 - •Allow referral to center where open TAAA surgery has matured excellent results.
 - •STS/AATS Consensus, 2012

MFS TEVAR: Bridge to definitive surgery

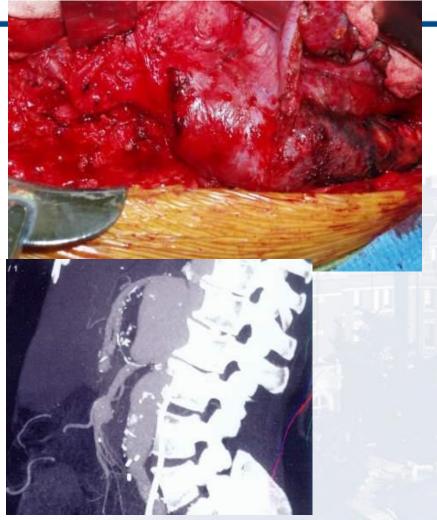


Conversion technique after TEVAR for TAAA.


• On call at JHH...Acute Dissection, VEDS

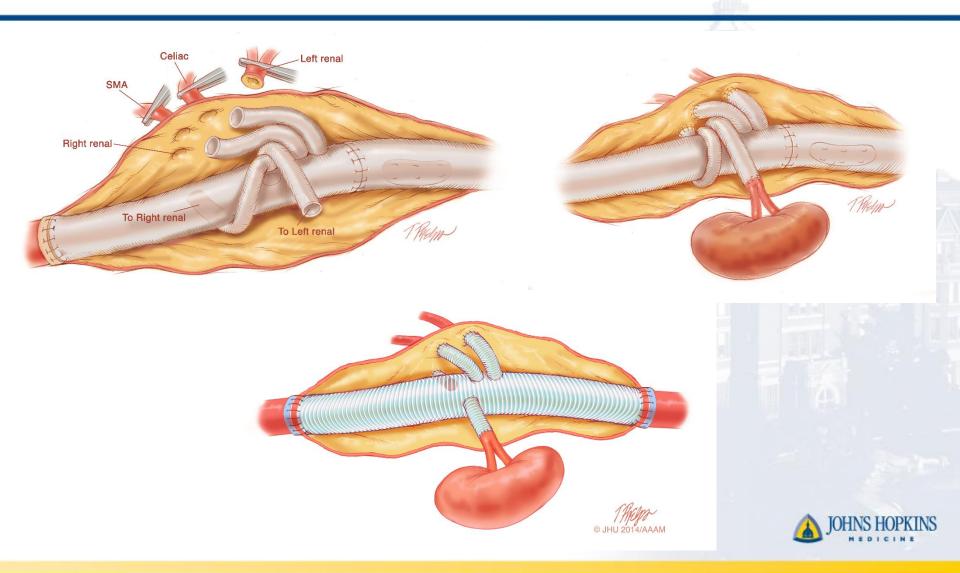
Loeys-Dietz Syndrome (LDS)

- Heterozygous mutations in TGFβR1 & TGFβR2 (NEJM, 2005)
- Characteristic triad:
 - Arterial tortuousity and aneurysm
 - Hypertelorism
 - Craniofacial (cleft palate, bifid uvula)
- LDS Type I
 - First CV 16.9 & death 22.6 yrs
- LDS Type 2
 - First CV 26.9 & death 31.8 yrs
- LDS 3 (SMAD3), LDS 4(OA&AAA)



Loeys-Dietz: Pan-Aortopathy

- •Degeneration of contiguous aorta or inclusion patches
- •JHH series of 107 pts,JVS 2001


•17 CTD

- •6/17 (35%) returned with patch aneurysm vs 5.6% atherosclerotic aneurysm pts
- •Mean time to dx 6.5 yrs
- Rapid recurrence LDS!

Technical Notes: Graft Configurations

Results: Perioperative Outcomes

(Hi POD 4 Arch rupture (non-contiguous)
POD 7 Cerebral hemorrhage
POD 46 Chylothorax/sepsis

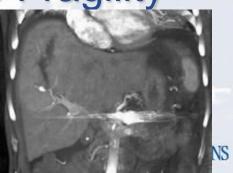
Characteristic	CTD (N=29)	Degenerative (N=108)	p-value
In-hospital mortality	10.3% (3)	5.6% (6)	0.40
Acute branched graft thrombosis	0.0% (0)	6.5% (7)	0.16
Perioperative complication*	62.1% (18)	54.6% (59)	0.47
Acute kidney injury	17.2% (5)	19.4% (21)	0.79
Hemodialysis	6.9% (2)	13.9% (15)	0.53
Pneumonia	10.3% (3)	11.1% (12)	1.0
Urinary tract infection	10.3% (3)	9.3% (10)	1.0
Respiratory failure	10.3% (3)	7.4% (8)	0.70
Bowel ischemia	0% (0)	8.3% (9)	0.11
Stroke	6.9% (2)	2.8% (3)	0.29
VTE	3.5% (1)	3.7% (4)	1.0
Bleeding	0% (0)	3.7% (4)	0.58
Lower extremity ischemia	3.5% (1)	2.8% (3)	1.00
Spinal headache	6.9% (2)	1.9% (2)	0.20
Heart failure	0% (0)	3.7% (4)	0.58
Myocardial infarction	0% (0)	2.8% (3)	1.0
Surgical site infection	3.5% (1)	1.9% (2)	0.51
Atrial fibrillation	3.5% (1)	0.9% (1)	0.38
Paraplegia	3.5% (1)	0.9% (1)	0.38

Results: Midterm Outcomes

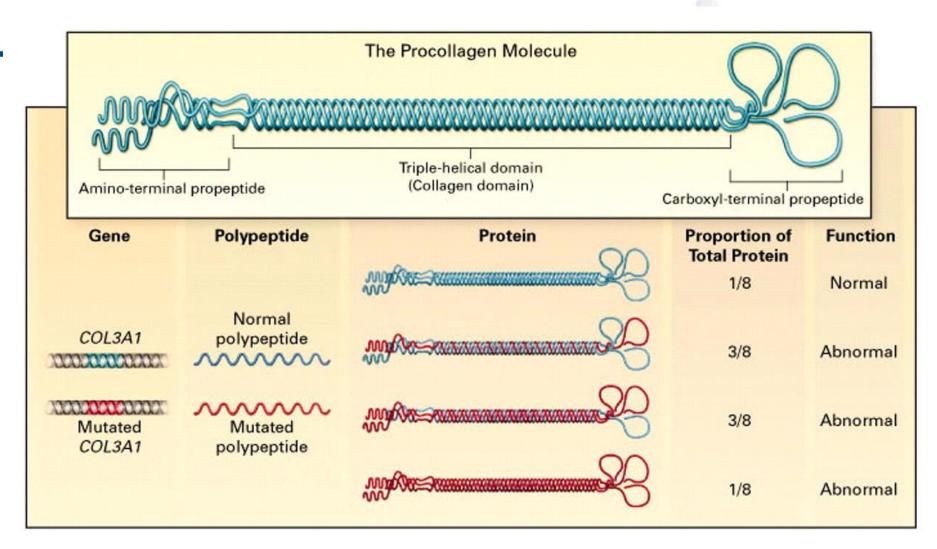
Characteristic	c 77% left renal artery bypass) p-value	
Follow-up [months (median	4.0 (8.0, 04.3)	14.7 (0.1, 37.2)	1.00	
IQR)] Overall mortality	10.3% (3)	13.9% (15)	0.76	
Loss of branched graft patency	0% (0)	7.8% (13)	0.04	
New aortic dissection	3.5% (1)	2.8% (3)	1.0	
New aneurysm (total)	24.1% (7)	8.3% (9)	0.02	
Aortic	20.7% (6)	6.5% (7)	0.02	
Visceral	0% (0)	0% (0)		
lliac/peripheral	13.8% (3)	3.7% (4)	0.04	
Contiguous with repair	66.7% (6)	63.6% (7)	0.66	
Creatinine (most recent; mg/dL)	1.4±0.3	1.4±0.1	0.22	

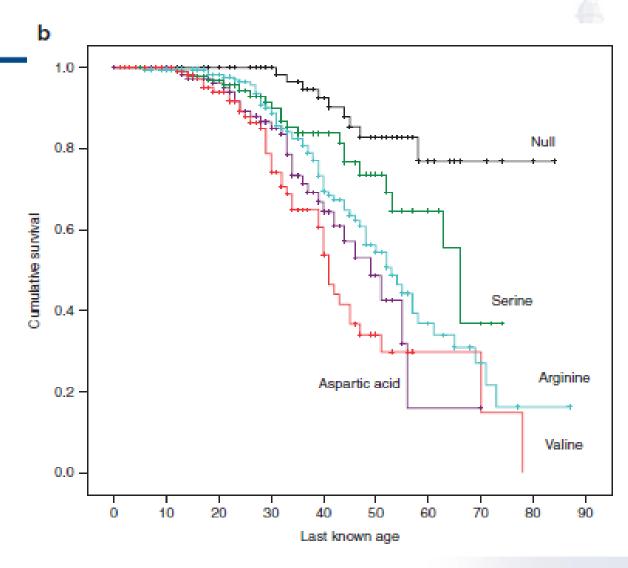
Loeys-Dietz Key Points

- •Loeys-Dietz Syndrome is an aggressive panaortic aneurysm syndrome.
- •Proper recognition is clinically possible with bedside physical examination.
- •Identification of LDS may expedite prophylactic surgery (versus VEDS, as both young).
- •Initial operative experience is encouraging, but recurrent aneurysm is common, both contiguous and non-contiguous. (Ann Vasc, 2016, JVS 2017)


Ehlers-Danlos Syndrome (EDS)

- Hereditary Connective Tissue Disorder
 - Mutations in genes regulating collagen matrix
- Six Different EDS Subtypes
 - Classical, Hypermobility, Vascular. Kyphoscoliotic, Arthrochalasic, & Dermatosparactic.
- Characterized by Joint Hypermobility, Skin Hyperextensibility, & Tissue Fragility




Collagen structure

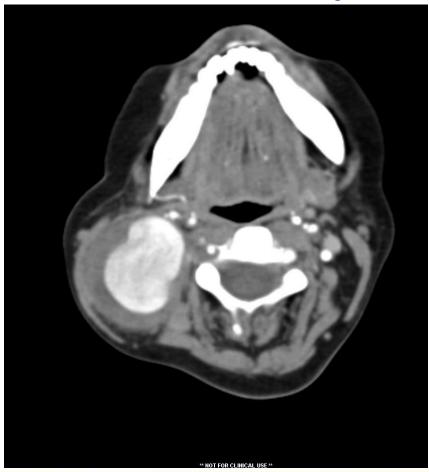
JOHNS HOPKINS

From NEJM Pyeritz 342 (10): 2000

Collagen structure

Pepin, Genet in Medicine, 2014

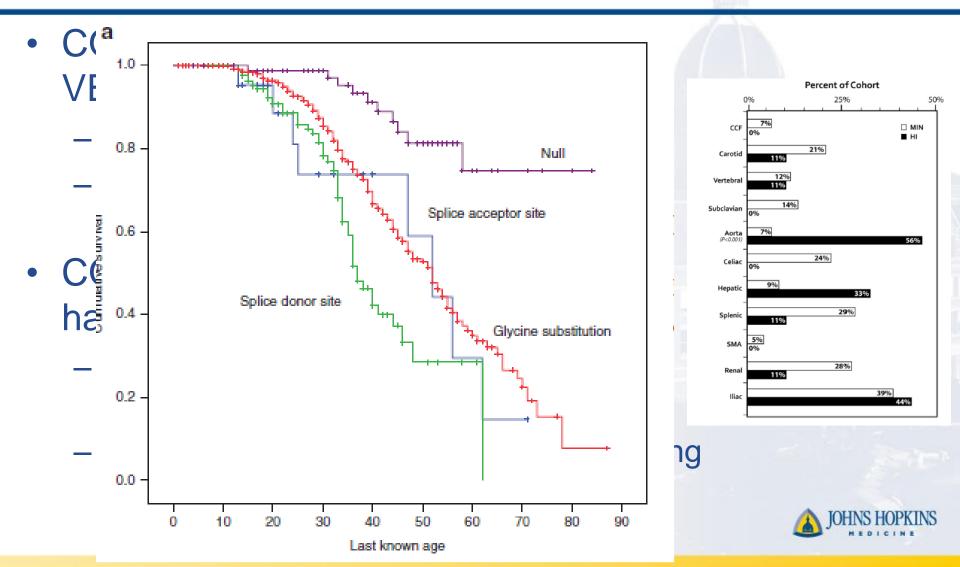
Truth, Lies, and Statistics.....



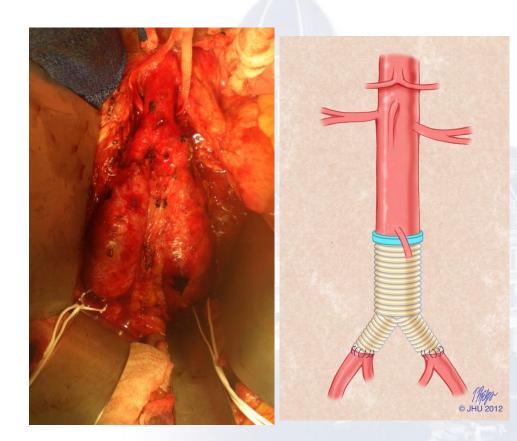
 Most common arterial pathology is pseudoaneurysm, and these are often Asx

Endovascular frontier....

• Think creatively...



Endovascular frontier....



Selection of VEDS Patients for Therapy: influence of specific genotypes (Shalub, JVS, 2014)

Open Surgery Considerations in VEDS

 Careful intubation •Sonosite[©] for lines Strict BP control Induced hypotension -SBP <90 mmHg No Rommels on vessels Never reclamp same vessel location. "Fall-back position"

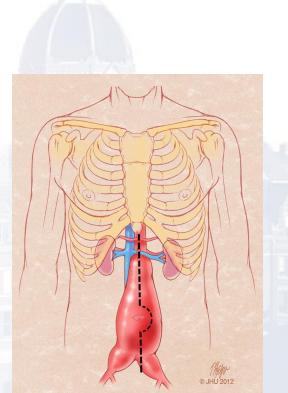
In-Hospital Outcomes

Endovascular Procedures (N=49)

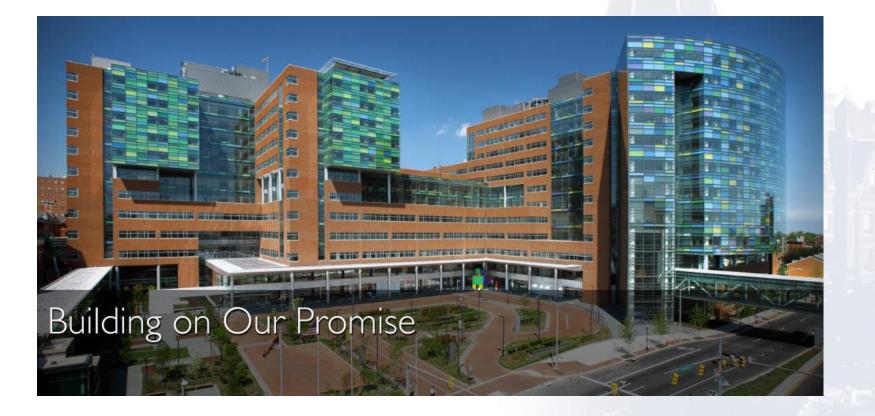
Outcome	Classic EDS (n=15)	Hypermobile EDS (n=27)	Vascular EDS (n=7)	P- Value
Operative Death - no (%)	0 (0)	0 (0)	0 (0)	NS
In-Hospital Death – no (%)	0 (0)	0 (0)	0 (0)	NS
LOS – median (IQR)	1 (1-2)	2 (1-2)	3 (1-6)	0.51
Any Complication – no (%)	0 (0)	1 (4)	0 (0)	0.37

Open Procedures (N=22)

Outcome	Classic EDS (n=7)	Hypermobile EDS (n=4)	Vascular EDS n=11	P- Value
Operative Death - no (%)	0 (0)	0 (0)	1 (10)	0.61
In-Hospital Death – no (%)	0 (0)	0 (0)	1 (10)	0.56
LOS – median (IQR)	7 (5-8)	5 (2-8)	7 (6-12)	0.86
Any Complication – no (%)	3 (29)	0 (0)	3 (30)	0.58


VEDS Conclusions

- Prompt diagnosis is key (versus LDS) and reproductive counseling is encouraged.
- Our results suggest the majority of VEDS pts with vascular disease can, <u>and should be</u>, managed electively with minimal morbidity & mortality.
- Prior recommendations to defer vascular interventions in VEDS pts until urgent or emergent presentation may not be warranted with contemporary management.


Contemporary CTD Management

- Multidisciplinary evaluation by geneticist, anesthesiologist, and surgeon.
- Liberal use of techniques to reduce operative trauma.
- Stent-graft therapy in CTD is defined in limited fashion.
 - Graft-to-graft sealing zones.
 - Revision procedures
 - Reoperative exposures
 - "Bridge" to referral

Thank you

