





The Vascular Society for Great Britain and Ireland

## <sup>18</sup>F-Fluorodeoxyglucose and <sup>18</sup>F-Fluoride Positron Emission Tomography for Identification of Restenosis in Symptomatic Peripheral Arterial Disease: A Prospective Clinical Study

The Vascular Societies' Annual Scientific Meeting 2018

28<sup>th</sup> November 2018

Mohammed M. Chowdhury

JM Tarkin, NR Evans, MS Albaghdadi, FR Joshi, EPV Le, EA Warburton, J Buscombe, PD Hayes, JHF Rudd, PA Coughlin

Department of Vascular Surgery, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, UK

## **Restenosis in PAD and Molecular Imaging**

#### Cambridge University Hospitals **NHS**



Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. *Lancet*. 2014; 383(9918):705-713.

Figueroa AL, Abdelbaky A, Truong QA, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future events. *JACC Cardiovasc Imag.* 2013; 6(12):1250-1259.



## CIRLA Study: Aims, Protocol, Index Lesion





## **Clinical Characteristics of Patients**

Cambridge University Hospitals **NHS** 

| Patient baseline characteristics stratified by restenosis status (n=40) |                            |                             |                             |         |
|-------------------------------------------------------------------------|----------------------------|-----------------------------|-----------------------------|---------|
|                                                                         | All                        | No-restenosis               | Restenosis                  |         |
|                                                                         | n=40                       | n=26                        | n=14                        | p value |
| Age in years, median (IQR)                                              | 71.5 (64.8-79.3)           | 73.5 (67.5-80.5)            | 63 (60-75)                  | 0.051   |
| Men, n (%)                                                              | 26 (65%)                   | 17 (65%)                    | 9 (64%)                     | 0.945   |
| Sub-group, n<br>(%)                                                     |                            |                             |                             |         |
| TASC A                                                                  | 26 (65%)                   | 19 (73%)                    | 7 (50%)                     | 0.243   |
| TASC B                                                                  | 14 (35%)                   | 7 (27%)                     | 7 (50%)                     | 0.327   |
| Previous Medical History, n (%)                                         |                            |                             |                             |         |
| Hypertension<br>Non-insulin dependent                                   | 32 (80%)                   | 19 (73%)                    | 13 (93%)                    | 0.141   |
| diabetes                                                                | 14 (35%)                   | 9 (35%)                     | 5 (36%)                     | 0.945   |
| Ischaemic heart disease/ MI                                             | 15 (38%)                   | 7 (27%)                     | 8 (57%)                     | 0.063   |
| Cerebrovascular event / TIA                                             | 5 (13%)                    | 3 (12%)                     | 2 (14%)                     | 0.805   |
| Smoker, n (%)                                                           | 4 (10%)                    | 3 (12%)                     | 1 (7%)                      | 0.663   |
| Medication, n (%)                                                       |                            |                             |                             |         |
| Antiplatelet                                                            | 33 (83%)                   | 21 (81%)                    | 12 (86%)                    | 0.178   |
| Anticoagulation                                                         | 4 (10%)                    | 3 (12%)                     | 1 (7%)                      | 0.892   |
| Statin                                                                  | 36 (90%)                   | 22 (85%)                    | 13 (93%)                    | 0.458   |
| ACE-inhibitor                                                           | 20 (50%)                   | 13 (50%)                    | 7 (50%)                     | 0.982   |
| BMI (kg/m <sup>2</sup> ), mean $\pm$ SD                                 | $28{\cdot}57\pm4{\cdot}35$ | $28{\cdot}84\pm 4{\cdot}84$ | $28{\cdot}07\pm 3{\cdot}37$ | 0.821   |
| ABPI                                                                    | 0.72 (0.68 - 0.77)         | 0.74 (0.68 - 0.79)          | 0.70 (0.66 - 0.75)          | 0.154   |
| High sensitivity CRP (mg/dL), median (IQR)                              | 2.77 (1.10-8.80)           | 3.90 (1.19-8.71)            | 2.1 (1.05-8.61)             | 0.61    |







# Baseline PET/CT tracer uptake is higher in restenosis patients

Cambridge University Hospitals **NHS** 



### <sup>18</sup>F-NaF PET/CT Signal Stratified by Restenosis Status at 12 months



### <sup>18</sup>F-FDG PET/CT Signal Stratified by Restenosis Status at 12 months





First PET/CT study in symptomatic PAD cohort to demonstrate that baseline arterial inflammation and microcalcification activity can identify patients who will progress to restenosis within a year.

Symptomatic anatomical restenosis is associated with persistent vascular inflammation and calcification activity following PTA.

Metabolic activity of the atherosclerotic plaque determines downstream restenosis, and this is a potential target for patient selection and therapeutic manipulation.



## **Acknowledgments**

### University of Cambridge

PI: Mr PA Coughlin / Dr JHF Rudd

JM Tarkin NR Evans E Le FR Joshi TB Berrett EA Warburton J Buscombe U Sadat PD Hayes

<u>University of Edinburgh, BHF</u> <u>Centre of Research</u>

Dr MR Dweck Professor DE Newby



FUNDING:









